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This article presents a new motion model deformable motion models for human motion modeling and synthesis. Our key idea is to apply statistical analysis
techniques to a set of precaptured human motion data and construct a low-dimensional deformable motion model of the form x = M(�α, �γ ), where the deformable
parameters �α and �γ control the motion’s geometric and timing variations, respectively. To generate a desired animation, we continuously adjust the deformable
parameters’ values to match various forms of user-specified constraints. Mathematically, we formulate the constraint-based motion synthesis problem in a
Maximum A Posteriori (MAP) framework by estimating the most likely deformable parameters from the user’s input. We demonstrate the power and flexibility
of our approach by exploring two interactive and easy-to-use interfaces for human motion generation: direct manipulation interfaces and sketching interfaces.
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1. INTRODUCTION

A long-standing challenge in computer graphics is to build an in-
teractive system that allows an inexperienced user to create a real-
istic human animation quickly and easily. However, building such
a system presents two major challenges. First, the generated mo-
tions must be natural-looking. People are extremely adept at judging
whether an animated motion appears realistic or not. A movement
that accomplishes an intended task, for example, punching a specific
point on a boxing bag, might be judged as unacceptable if it appears
robotic, jerky, uncoordinated, or contains any noticeable visual ar-
tifacts such as foot sliding. The second challenge is to provide an
easy-to-use interface for animation generation. To create such an
interface, the system must be able to support various forms of user
constraints in order to accommodate users with different skill lev-
els. In addition, the algorithm must be fast enough that the interface
appears responsive and the user remains engaged in the animation
task.

One appealing solution to this problem is to construct statistical
motion models from prerecorded human motion data and use the
models to generalize the captured motion data for new tasks. Statis-
tical motion models are advantageous for human motion synthesis
because they are very compact, they can measure the naturalness of
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human motion, and they can be used to generate an infinite num-
ber of natural-looking motions that are not in precaptured motion
data. However, current statistical motion models often lack global
motion structural information (e.g., poses and timing of “left-toe-
down” or “double-support”), and encode little or no information
about environmental contact events (e.g., foot contact constraints).
For graphics applications, this is always undesirable because it leads
directly to noticeable visual artifacts (e.g., foot sliding) in output an-
imation. In addition, this approach has not demonstrated that it can
support various forms of user constraints at interactive frame rates,
which significantly limits the impact and use of statistical motion
models in graphics applications.

This article presents a new motion model we term deformable mo-
tion models for human motion analysis and synthesis. Our key idea is
to apply statistical analysis techniques to a large set of annotated mo-
tion examples and construct a deformable motion model of the form
x = M(�α, �γ ) for particular human actions x, where the deformable
parameters �α and �γ control the motion’s geometric and timing vari-
ations, respectively. Deformable motion models provide a continu-
ous, compact representation for allowable motion variations, but are
specific enough not to allow arbitrary variations that are not similar
to those seen in the training examples. In addition, the deformable
motion models encode both global human motion structures and
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Fig. 1. Intuitive interactive motion generation with deformable motion models: (a) direct manipulation interfaces with point dragging (red point) and fixed
handles (green point); (b) pen-based sketching interfaces; (c) motion filtering and foot-skating removal.

environmental contact information. With such deformable models,
we could adjust the values of the deformable parameters �α and �γ ,
generating an infinite number of natural-looking motions M(�α, �γ ).
Furthermore, we could choose values for the deformable parame-
ters that would match various forms of user constraints derived from
intuitive animation interfaces.

We have demonstrated the power and flexibility of our deformable
motion models by exploring both direct manipulation interfaces
and sketching interfaces for human motion generation. When using
direct manipulation interfaces, one can create a desired animation
in real time by dragging the 2D position of any character point at
any frame, modifying the trajectory of any character point across
the entire sequence, adjusting the values of high-level control knobs
such as walking directions or step sizes, or specifying the timing of
any frame (Figure 1(a)). In the sketching interfaces, the user can pick
any point on the character and sketch a desired timed trajectory in the
2D screen space (Figure 1(b)). The system automatically generates
a natural-looking human motion that best matches the positions
and timing of the 2D sketches. In addition, the deformable motion
models can be leveraged to improve the performance of human
motion processing. We show how to apply the deformable motion
models to transform a 2D animation sequence into a 3D animation
sequence, and remove foot-sliding artifacts in human walking data
(Figure 1(c)).

2. BACKGROUND

Our approach constructs deformable motion models from a large
set of precaptured motion data and uses them to create realistic
animation that satisfies various forms of user-defined constraints.
Therefore, we will focus our discussion on data-driven human mo-
tion models and their application in the creation of intuitive and
interactive interfaces for human motion generation.

One effective way to represent human motion is motion graphs,
which represent allowable transitions between poses [Arikan and
Forsyth 2002; Kovar et al. 2002; Lee et al. 2002, 2006; Safonova and
Hodgins 2007] or motion segments [Treuille et al. 2007; Shum et al.
2008]. Motion graphs transform a motion synthesis problem into a
discrete graph search problem, which significantly speeds up the
motion generation process. However, these representations lack the

capability to generalize the captured data to satisfy new kinematic
constraints. Thus, motion graphs do not provide fine-grained control
over human motion.

An alternative representation is weighted interpolations of mo-
tion examples [Rose et al. 1998; Kovar and Gleicher 2004; Mukai
and Kuriyama 2005; Kwon and Shin 2005; Heck et al. 2007]. Mo-
tion interpolation registers a set of structurally similar but distinc-
tive motion examples and then parameterizes them in an abstract
space defined for motion control. Given the control parameters’
new values, the sequences can be smoothly blended with appropri-
ate kernel functions such as radial basis functions. This approach
often runs in real time and is well suited for interactive environ-
ments where control constraints are known in advance, for exam-
ple, when only the hand position will be constrained. However,
motion interpolation is often based on sparse data interpolation
techniques and thus does not provide a principled way to support
various forms of kinematic constraints, such as key-frame con-
straints. In contrast, our system formulates the motion synthesis
problem within a spacetime optimization framework [Witkin and
Kass 1988], thereby supporting any kinematic constraints. In addi-
tion, motion interpolation is not a compact representation for hu-
man motion because it neglects spatial-temporal correlation em-
bedded in motion examples. To address this problem, we apply
dimensionality reduction analysis techniques to the registered mo-
tion examples as well as the time warping functions, constructing a
compact and low-dimensional deformable model for human motion
representation.

Our work builds on the success of previous statistical models used
for human motion analysis and synthesis. Statistical motion models
are often represented as a set of mathematical equations or functions
that describe human motion using a finite number of parameters and
their associated probability distributions [Molina Tanco and Hilton
2000; Brand and Hertzmann 2000; Li et al. 2002; Chai and Hodgins
2007]. Earlier research focused on discrete-state dynamic models,
such as variants of Hidden Markov Models (HMMs) [Molina Tanco
and Hilton 2000; Brand and Hertzmann 2000] and Switched Lin-
ear Dynamic Systems (SLDS) [Li et al. 2002]. These human mo-
tion models have been used for interpolation of key frames [Molina
Tanco and Hilton 2000; Li et al. 2002] or motion styles [Brand and
Hertzmann 2000].
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One drawback of discrete-state dynamic models is that they usu-
ally do not provide a principled way to support continuous kinematic
constraints such as key-trajectories or foot contact constraints. Chai
and Hodgins [2007] recently addressed this limitation by construct-
ing continuous dynamic models from human motion data and us-
ing them to generate realistic animation in a spacetime optimization
framework. However, their system often produces poor results when
a sparse set of constraints, such as step sizes for walking, are used
for motion synthesis. Furthermore, their system does not run at in-
teractive frame rates; the synthesis process often takes about half
a minute. More importantly, both continuous and discrete statis-
tical models encode little or no information about environmental
contact events. As a result, unless the user explicitly specifies con-
tact constraints throughout the motion, the motions they generate
often violate the undefined contact constraints and thereby display
noticeable visual artifacts, such as foot sliding.

The proposed deformable motion models combine the advantages
of motion interpolation and statistical motion models while avoiding
their disadvantages at the same time. First, they can be used to gener-
ate realistic animation from any kinematic constraints at interactive
frame rates. Second, our algorithm can generate high-quality ani-
mation without specifying any environmental contact constraints.
Third, deformable motion models can be used to produce a natural-
looking animation from both fine-grained constraints and sparse
constraints.

In spirit, deformable motion models are similar to low-
dimensional statistical human pose models for inverse kinemat-
ics [Grochow et al. 2004; Chai and Hodgins 2005]. However, these
models lack the temporal information they need to generate anima-
tions unless the user provides continuous control signals (the per-
formance animation problem). We significantly extend the idea by
building a low-dimensional deformable model for an entire motion
sequence and using it for interactive motion design.

Statistical motion models are also used for reconstructing 3D hu-
man motion from video [Howe et al. 1999; Pavlović et al. 2000;
Ormoneit et al. 2001; Sidenbladh et al. 2002]. This approach is
related to our own in that statistical models generated from mo-
tion capture data are used to reduce the ambiguity of video-based
human motion tracking. However, the statistical models used for hu-
man motion tracking have limitations that are similar to the models
used for human motion synthesis. They are often based on discrete-
state dynamic models and lack environmental contact information.
In addition, the process of video-based motion tracking is often
performed in a sequential framework, which initializes a tracker in
one frame and then performs tracking forward recursively in time.
Instead, our motion synthesis algorithm simultaneously computes
an entire motion sequence based on the constraints the user defines
throughout the motion.

3. OVERVIEW

The goal of this research is to develop an interactive system that
allows novices to create realistic human animation quickly and eas-
ily. For this purpose, we construct a low-dimensional deformable
motion model from a large set of preregistered human motion data
and use it to create a natural-looking animation (x) that achieves the
goal (y) specified by the user. Our deformable motion models are
constructed from a large set of structurally similar but distinctive
motion examples.

We represent the set of motion examples in the database as
{xn(t ′)|n = 1, . . . , N , t ′ = 1, . . . , T ′

n}, where N is the number of
motion examples and T ′

n is the total number of frames in the nth
motion example. Let the vector xn(t ′) represent the root position

and orientation as well as the joint angle values of a full-body pose
at frame t ′. Let xn be the motion vector sequentially concatenating
all poses of the nth motion example.

Our system consists of the following major components.

Motion decomposition. First, we use a semi-automatic process to
register all motion examples xn, n = 1, . . . , N to a reference mo-
tion sequence with appropriate time warping functions wn, n =
1, . . . , N . Next, we apply the computed time warping functions
wn, n = 1, . . . , N to warp each motion sequence xn to a new mo-
tion sequence sn in a canonical timeline defined by the reference
motion. Therefore, we can decompose the original motion data
xn, n = 1, . . . , N into two datasets: the warped motion examples
sn, n = 1, . . . , N and the corresponding time warping functions
wn, n = 1, . . . , N . Both datasets are defined in the canonical time-
line, which are suitable for statistical analysis.

Motion analysis. We apply statistical analysis techniques to the reg-
istered motion data sn, n = 1, . . . , N and construct a deformable
geometric model of the form s = P(�α), where �α is a deformable
vector of the model. Similarly, we can apply statistical analysis tech-
niques to the time warping functions wn, n = 1, . . . , N to construct
a deformable timing model of the form w = H(�γ ), where �γ is a de-
formable vector of the model. The deformable parameters �α and �γ
describe the motion’s geometric and timing variations, respectively.
Furthermore, we learn a joint probability density function pr(�α, �γ )
to model the correlation between the geometric and timing varia-
tions. The deformable models and the joint probability distribution
define a generative model for human motion synthesis.

Motion synthesis and control. The goal here is to use the de-
formable motion models to generate a natural-looking animation
x that achieves the goal y specified by the user. Mathematically, we
formulate the motion synthesis problem in a Maximum A Posteri-
ori (MAP) framework by estimating the most plausible parameters
�α and �γ from the user’s input y. We explore two interfaces for
interactive intuitive human motion generation: direct manipulation
interfaces and sketching interfaces. We also show how to extend the
framework for filtering noisy motion data and removing foot-sliding
artifacts in input motion.

We describe these components in detail in the next three sections.

4. MOTION DATA DECOMPOSITION

We have constructed deformable motion models for a wide variety
of human actions, including walking, jumping, bowling, and golf
swing. To build a deformable motion model for a particular human
action such as walking, we record a database from an actor per-
forming walking with different styles, such as speeds, step sizes,
directions, and emotions. We preprocess all motion examples in the
database by registering them against each other. More specifically,
we pick one example motion as a reference motion (e.g., normal
walking) and use it to register the rest of database examples with
appropriate time warping functions.

We require all motion examples to be structurally similar so that
the captured motion examples can be semantically registered against
each other. In addition, we require motion examples have consis-
tent foot contact events in order to model the locations and timing
of foot contact events in walking data. A set of walking examples,
for instance, must all start out on the same foot, take the same
number of steps, and have the same arm-swing phase. However,
we do not include any “spurious” motions into the training data.
We define “spurious” motions as motions that cannot be seman-
tically registered with the reference motion and/or have different
contact events from the reference motion. For example, “walking
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Fig. 2. Key frames used for motion data registration, including walking, golf swing, jumping, and bowling.

with head scratching” is deemed to be “spurious” for our current
walking database because the “head scratching” pattern cannot be
semantically registered with a normal “arm swing” pattern in the
reference motion.

We register motion examples in a translation- and rotation-
invariant way by decoupling each pose from its translation in the
ground plane and the rotation of its hips about the up axis [Kovar
and Gleicher 2003]. To ensure the quality of registration results, we
take a “semi-automatic” procedure to register database examples.
First, we manually select a small set of key frames for both the
reference motion and the motion examples. The key frames often
include the starting and ending frames as well as the instants when
contact state transitions occur. The key frames allow us to divide the
whole motion sequence into multiple subsequences. Next, we use
dynamic time warping techniques [Myers and Rabiner 1981] to au-
tomatically register each subsequence. If the registration results are
not “perceptually” good, we can select more key frames, which often
correspond to instants with highest visual content change or frames
with poorest registration results, and add them to the registration
procedure. We repeat this procedure until satisfactory registration
results are achieved.

Figure 2 visualizes key frames used for registering walking, golf
swing, jumping, and bowling data, respectively. For walking, the
key frames include the starting and ending frames as well as five
contact state transition frames. Golf swing needs four key frames,
including the starting and ending frames, one contact state transition
frame, and one frame with the highest visual content changes. The
key frames for jumping include the starting and ending frames, two
contact state transition frames, and three frames with the highest
visual content changes. Bowling only needs two key frames (the
starting and ending frames).

We define time warping functions t ′ = w(t) in the canonical time-
line t , where t = 1, . . . , T . This allows us to describe the time warp-
ing functions as a T -dimensional vector w = [w(1), . . . , w(T )]T .
We also use the time warping functions to warp the original mo-
tion examples xn(t ′), t ′ = 1, . . . , T ′

n into the registered motion
examples sn(t), t = 1, . . . , T , where t represents the canonical
timeline specified by the reference motion. Figures 3(a), 3(b),
and 3(d) visualize the joint angle values of the right femur of
the original walking examples xn, n = 1, . . . , N , the registered
walking examples sn, n = 1, . . . , N , and the time warping func-

tions wn, n = 1, . . . , N , respectively. The vectors sn and wn encode
the motion’s geometric and timing variations, respectively.

One advantage of the new representation is that the vectors sn and
wn incorporate expert knowledge in the annotation of the training
data. Note that key frames in the original motion examples annotate
important motion structures as well as environmental contact infor-
mation. As a result, the new vectors capture structural elements and
environmental contact knowledge of human actions. For example,
we could easily identify which components in the new vectors con-
trol the poses of important events such as “toe-down” and “heel-up”,
or the timing of contact transitions. In addition, the new represen-
tation enables us to describe the motion examples with two point
clouds sn, n = 1, . . . , N and wn, n = 1, . . . , N , which are suitable
for statistical data analysis.

5. HUMAN MOTION ANALYSIS

In this section, we apply statistical analysis techniques to both the
registered motion examples sn, n = 1, . . . , N and the time warp-
ing functions wn, n = 1, . . . , N to construct a deformable motion
model of the form x = M(�α, �γ ), where the deformable parame-
ters �α and �γ control the motion’s geometric and timing variations,
respectively.

5.1 Modeling Geometric Variations

Our first goal is to construct a deformable geometric model of
the form s = P(�α) from the registered motion examples sn, n =
1, . . . , N . The registered motion data sn ∈ RDT , n = 1, . . . , N
form a distribution in a high-dimensional motion space. If we can
model this distribution, we can generate an infinite number of new
motion sequences s, similar to those in the original training set. We
can also examine new motions to decide whether they are plausible
motions or not.

We apply Principle Component Analysis (PCA) to the registered
motion examples sn, n = 1, . . . , N . Note that sn is a long vector
that sequentially concatenates all poses of the nth motion example.
As a result, we can construct a deformable geometric model for
the entire motion sequence using a mean motion p0 and a weighted
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Fig. 3. Analysis and visualization of the 200 walking examples (right femur’s rotational angle about the x axis). (a) The unregistered data xn, n = 1, . . . , 200.
(b) The registered data sn, n = 1, . . . , 200. (c) The top ten deformable modes of the geometric variations pm , m = 1, . . . , 10. (d) The time warping functions
wn, n = 1, . . . , 200. (e) The top ten deformable modes of the timing variations bk , k = 1, . . . , 10.

combination of eigen-motions pm, m = 1, . . . , M :

s = P(�α)
= p0 + [p1 . . . pM ]�α,

(1)

where the vector �α = [α1, α2, . . . , αM ]T represents the eigen
weights and the vectors pm, m = 1, . . . , M are a set of orthogo-
nal modes to model geometric variations across the entire motion
sequence. In addition, the t th pose of the deformable geometric
model is given by

s(t) = P(t ; �α)
= p0(t) + [p1(t) . . . pM (t)]�α, t = 1, . . . , T,

(2)

where s(t), p0(t), and pm(t) represent the poses of the new motion,
mean motion, and orthogonal modes at frame t , respectively.

What remains is to determine how many modes (M) to retain.
This leads to a trade-off between the accuracy and the compactness
of the motion model. However, it is safe to consider small-scale
variations as noise. In our experiments, we automatically determine
the number of modes by keeping 99% of the original variations. For
our walking database containing 200 examples, we can represent an
entire walking sequence using a 30-dimensional vector. Figure 4(c)
visualizes the first ten modes of the walking database.

5.2 Modeling Timing Variations

A deformable geometric model s = P(�α) does not consider any
timing variations embedded in the motion examples because it is
constructed from the registered motion examples sn . A good ex-
tension is to warp the deformable geometric model P(�α) with an
appropriate time warping function of the form w = H(�γ ), where �γ
is a vector of the deformable timing model H.

Direct application of statistical analysis techniques to time warp-
ing functions, however, could be problematic because time warp-
ing functions are constrained functions; they should be positive and
strictly monotonic everywhere. For example, if we directly apply the
PCA to the time warping functions wn, n = 1, . . . , N , the resulting
deformable timing model might produce invalid time warping func-
tions that violate the monotonicity (Figure 4). Therefore, we need
to extend statistical analysis techniques for time warping functions.

Our idea is to transform the constrained time warping functions
wn into unconstrained functions zn and apply statistical analysis
to zn, n = 1, . . . , N to construct a deformable timing model of
the form z = Z(�γ ). Transforming the deformable timing model
z = Z(�γ ) from the new space z to the original space w results in our
final deformable timing model w = H(�γ ).

More specifically, we choose to transform a time warping function
w(t) into a new space z(t) as follows.

z(t) = ln(w(t) − w(t − 1)), t = 1, . . . , T (3)

Fig. 4. Monotonic condition of time warping functions: a linear combina-
tion of eigen curves in the original space produces a time warping curve that
violates the monotonic condition.

After choosing w(0) to be zero, we can easily transform the function
from the new space z back to the original space w.

w(t) =
t∑

i=1

exp[z(i)], t = 1, . . . , T (4)

Eq. (4) ensures that both positive and monotonic constraints will be
automatically satisfied if we conduct statistical analysis in the new
space z and transform the deformable timing models back to the
original space.

Similarly, we apply the Principle Component Analysis (PCA) to
the time warping functions zn, n = 1, . . . , N in the new space. We
can represent the deformable timing model z = Z(�γ ) in the new
space as a mean warping function b0 plus a linear combination of
eigen-vectors bk, k = 1, . . . , K . We have

z = Z(�γ )
= b0 + [b1 . . . bK ]�γ ,

(5)

where the vector �γ = [γ1, γ2, . . . , γK ]T is the deformable timing
vector of the model. Combining Eq. (5) with Eq. (4), we obtain the
following deformable timing model in the original space:

w(t) = H(t ; �γ )
= ∑t

i=1 exp(b0(i) + [b1(i) . . . bK (i)]�γ ), t = 1, . . . , T,

(6)

where the scalar bk(i) represents the i th component of the kth eigen-
vector bk . Note that the time warping functions generated by the
deformable timing model H(�γ ) = [H (1; �γ ), . . . , H (T ; �γ )]T are al-
ways positive and monotonic no matter how we adjust the values
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of the deformable parameters �γ . Figure 3(e) visualizes the first ten
modes of the time warping functions in the original space w.

5.3 Deformable Motion Models

We now combine the deformable geometric models P(�α) with the
deformable timing models H(�γ ) to construct a complete deformable
motion model

x = M(�α, �γ )
= P(�α) ⊗ H(�γ ), (7)

where the operator ⊗ warps the motion sequence P(�α) with the time
warping function H(�γ ).

The deformable motion model M(�α, �γ ) can be applied to gener-
ate a new motion sequence x. In particular, given the deformable
geometric parameters �α, we can use Eq. (2) to generate a new mo-
tion sequence s = P(�α) in the canonical timeline. Similarly, a new
time warping function w = H(�γ ) can be generated by choosing ap-
propriate values for the deformable timing parameters �γ based on
Eq. (6). A new motion sequence x can then be obtained by warping
the new motion s = P(�α) in the canonical timeline with the time
warping function w = H(�γ ).

Mathematically, we can generate a new motion instance x(t ′), t ′ =
1, . . . , T ′ with the following equation.

x(t ′) = P(w(t); �α)
= P(H(t ; �γ ); �α)
= p0(H(t ; �γ )) + [p1(H(t ; �γ )) . . . pM (H(t ; �γ ))]�α

(8)

The generated motion x is sampled at the timeline t ′, t ′ = 1, . . . , T ′;
typically it is linearly interpolated from x(w(t)), t = 1, . . . , T . Note
that the deformable motion model is a nonlinear human motion gen-
erative model because it is nonlinear w.r.t (with respect to) the timing
parameters �γ although linear w.r.t the geometric parameters �α.

In addition, we learn a joint probability distribution function
pr (�α, �γ ) based on the registered motion examples sn, n = 1, . . . , N
and the time warping functions wn, n = 1, . . . , N . The joint prob-
ability distribution, which models the correlation between the geo-
metric and timing variations, can be used to constrain the resulting
motions to stay close to the training examples.

For each motion example sn and wn (thus also zn) in the database,
we can compute the deformable parameters �αn and �γn with Eq. (2)
and Eq. (5) respectively.

�αn = [p1 . . . pM ]T (sn − p0)
�γn = [b1 . . . bK ]T (zn − b0) (9)

We then form a concatenated vector un as

un =
( �αn

W�γn

)
=

(
[p1 . . . pM ]T (sn − p0)

W[b1 . . . bK ]T (zn − b0)

)
, n = 1, . . . , N ,

(10)

where the diagonal matrix W controls the weights of each timing
parameter γk, k = 1 . . . , K , allowing for the difference in units be-
tween the geometric and timing parameters. We model the probabil-
ity distribution pr (�α, �γ ) with a Gaussian Mixture Model (GMM).
The parameters of the Gaussian mixture model are automatically
estimated using an expectation-maximization algorithm [Bishop
1996].

We now describe how to compute the diagonal weight matrix W.
The elements of �α and �γ have different units so they cannot be com-
pared directly. Because pm, m = 1, . . . , M are orthogonal columns,
varying �α by one unit moves s = P(�α) by one unit. To make �α and
�γ commensurate, we must estimate the effect of varying �γ on the

motion s. For each training example sn, n = 1, . . . , N , we systemat-
ically displace each element of �γ from its default value �γn and warp
the default motion sn with the displaced time warping functions.
The RMS (Root Mean Square) change in sn, n = 1, . . . , N per unit
change in timing parameters gives the weight to be applied to that
parameter in Eq. (10).

The deformable motion models M(�α, �γ ) and the joint distribution
function pr (�α, �γ ) provide a compact generative model for human
motion synthesis. With such a generative model, we can generate an
infinite number of motion instances by sampling the joint probability
distribution pr (�α, �γ ) and warping the synthesized motion P(�α) in
the canonical timeline with the synthesized time warping function
H(�γ ). More importantly, we can use them to create a natural-looking
animation that achieves the goal specified by the user.

6. INTERACTIVE HUMAN MOTION SYNTHESIS

This section discusses the application of deformable motion mod-
els to intuitive interactive human motion generation. The key idea
of our motion synthesis process is sampling the prior distribution
function pr (�α, �γ ) to generate a motion instance x = M(�α, �γ ) that
best matches the user’s input y.

We will formulate the motion synthesis problem in a Maximum
A Posteriori (MAP) framework by estimating the most likely de-
formable parameters �α and �γ from the user’s input y.

arg max�α,�γ pr (�α, �γ |y) = arg max�α,�γ
pr (y|�α,�γ )pr (�α,�γ )

pr (y)
∝ arg max�α,�γ pr (y|�α, �γ )pr (�α, �γ ).

(11)

In our implementation, we minimize the negative logarithm of the
posteriori probability density function pr (�α, �γ |y), yielding the fol-
lowing energy minimization problem:

arg min�α,�γ − ln pr (y|�α, �γ )︸ ︷︷ ︸ + − ln pr (�α, �γ )︸ ︷︷ ︸,
Elikelihood Eprior

(12)

where the first term Elikelihood is the likelihood term that measures
how well the generated motion x = M(�α, �γ ) matches the user’s
input y, and the second term is the prior term Eprior that constrains
the generated motion to stay close to the training examples. Opti-
mal estimation of the deformable parameters from the user’s input
produces a natural-looking motion that achieves the goal specified
by the user.

The MAP framework naturally balances the trade-off between the
user constraint term and the motion prior term. For our application,
this is particularly important because constraints from intuitive in-
terfaces are often noisy, and we usually cannot find a natural-looking
human motion that exactly matches the noisy constraints defined by
novices. Furthermore, this allows us to formulate the motion synthe-
sis process in a spacetime optimization framework. This framework
is extremely flexible; any form of user constraint can be integrated
into the framework as long as we can numerically evaluate the cor-
responding likelihood terms, that is, how well the generated motion
M(�α, �γ ) matches the user’s input y. Another advantage of this frame-
work is that the total number of deformable parameters is often very
low (typically less than 50). Optimizing human motions in such a
low-dimensional space not only improves the speed of the synthesis,
it also reduces the synthesis ambiguity.

In the following subsections, we will explore two interactive inter-
faces for human motion generation: direct manipulation interfaces
and sketching interfaces. In addition, we will discuss how to trans-
form noisy motion data into high-quality human motion data by
applying the framework.
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Fig. 5. Our system allows an intuitive design of human motion in real time: (a) direct manipulation with multiple trajectory constraints; (b) direct manipulation
of walking directions; (c) direct manipulation of step sizes.

6.1 Direct Manipulation Interfaces

Direct manipulation interfaces start with a default motion sequence:
M(�0, �0). The user can adjust the motion in real time by dragging
any character point at any frame, modifying the trajectory of any
character point across the entire sequence, adjusting the values of
high-level control knobs such as walking directions or step sizes,
or specifying timing constraints for any frame. All the constraints
can be specified on a 2D screen space. Thus we avoid the need
for complex and cumbersome 3D interactions that are common in
animation software. In particular, the current direct manipulation
interfaces support the following real-time interactions.

Point dragging. The user can select any character point at
any frame and drag its position with a mouse in screen space
(Figure 1(a)). The system automatically adjusts the deformable pa-
rameters to satisfy the point dragging constraints.

Trajectory editing. The user can select any character point
and edit its trajectory across the entire sequence in screen space
(Figure 5(a)). First, the system fits the trajectory using Catmull-
Rom splines [Catmull and Rom 1974]. Then, the user can incre-
mentally edit the trajectory by adjusting the control points located
on the spline. We choose Catmull-Rom splines because they are
easy to compute and guarantee that control points lie on the curve.
Moreover, the tangents of the generated curve are continuous over
multiple segments.

Fixed handles. Because natural human motion is a coordinated
movement, the movement between different joints might not be
independent. If the user controls the motion with one of the aforesaid
handles, unselected regions of human motion might still change.
With fixed handles, the user can select any character point, key
pose, or trajectory that should remain unchanged. This handle must
be used with other constraints, which allows for local control of any
human motions that are being changed. In Figure 1(a), the user drags
a point on the character’s head by clicking a fixed handle pinned on
its left leg.

Other handles. The user can achieve a high-level motion control
by combining fixed handles with point dragging operations. For
example, the user can adjust the walking direction or step size by
fixing the root position of the starting frame and dragging the root
position of the ending frame in different directions, such as away or
towards the fixed points. Figures 5(b) and 5(c) illustrate the direct
manipulation interface for adjusting the walking direction and step
size. In addition, the user can adjust a small set of key poses and use
the system to automatically interpolate the intermediate poses.

Timing control. For novice users, timing an animation is one of
the most difficult processes. Our system allows the user to select
any frame throughout the motion and specify a desired timing. In
addition, the user can select any two frames and control the time
duration between the two frames.

In general, the constraints here can be categorized into two groups:
kinematic constraints ykine and timing constraints ytime. The kine-
matic constraints control the motion’s geometric variations while
the timing constraints specify the generated motion’s desired tim-
ing. One nice property of the direct manipulation interfaces is to
allow the user to specify the kinematic constraints w.r.t. particu-
lar frames in the canonical timeline. In other words, the specified
kinematic constraints ykine are independent of the deformable timing
parameters �γ . In addition, because the timing constraints ytime are
fully determined by time warping functions, they are independent
of the geometric deformable parameters �α. Therefore, we can de-
compose the likelihood term for the direct manipulation interfaces
into two terms

Elikelihood = − ln pr (ykine, ytime|�α, �γ )
= − ln pr (ykine|�α, �γ ) + − ln pr (ytime|�α, �γ )
= − ln pr (ykine|�α)︸ ︷︷ ︸ + − ln pr (ytime|�γ )︸ ︷︷ ︸,

Ekine Etime

(13)

where Ekine and Etime represent the likelihood terms for kinematic
and timing constraints, respectively.

While the deformable parameters �α and �γ completely determine
the generated motion M(�α, �γ ), the input ykine and ytime specified by
the user might vary due to noise. Assuming Gaussian noise with a
standard deviation of σkine for kinematic input at frame tk (yk

kine), we
can define the likelihood term for kinematic constraints as

Ekine = − ln pr (ykine|�α)

= − ln
∏

k
1√
2π

exp
−‖yk

kine−f(P(tk ;�α))‖2

σ 2
kine

∝ ∑
k

‖yk
kine−f(P(tk ;�α))‖2

σ 2
kine

,

(14)

where the function f maps the tk-th pose of the synthesized motion
sequence in the joint angle space to the positions and/or orientations
of end-effectors in screen space. Note that we drop off the constant
− ln 1√

2π
in the equation. A good match between the synthesized

motion and the user’s input results in a low value for the likelihood
term.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 9, Publication date: December 2009.



9:8 • J. Min et al.

Fig. 6. Sketching interfaces for interactive motion generation. (a) The user picks a point on the character and sketches a timed trajectory in 2D screen space.
(b) The generated animation automatically matches the timing and trajectory of the 2D sketch.

Similarly for timing constraints ytime, we assume Gaussian noise
with a standard deviation of σtime. We can define the likelihood term
for the timing constraints as

Etime ∝ ‖ytime−g(H(�γ ))‖2

σ 2
time

, (15)

where the function g maps the generated time warping function
H(�γ ) to the timings of particular frames or the time duration of two
selected frames.

The final objective function for direct manipulation interfaces
combines the two likelihood terms with the prior term.

arg min
�α,�γ

Ekine(�α) + Etime(�γ ) − ln pr (�α, �γ ) (16)

In practice, we decompose the entire optimization for the direct
manipulation interfaces into two separate processes. For kinematic
motion manipulation, the system keeps the timing parameters �γ
constant and optimizes the geometric parameters �α iteratively. The
timing manipulating process fixes the geometric parameters �α and
updates the timing parameters �γ based on the timing constraints.

6.2 Sketching Interfaces

When using a sketching interface, the user can pick any point on the
character and sketch a timed trajectory in 2D screen space. The sys-
tem automatically generates a natural-looking animation that best
matches the path and timing of the 2D sketch (Figure 1(b)). Unlike
direct manipulation interfaces, the sketches drawn by the user are
defined on their own timelines t ′, t ′ = 1, . . . , T ′ rather than the
canonical timeline t, t = 1, . . . , T .

Let y(t ′), t ′ = 1, . . . , T ′ denote the sketched 2D position at frame
t ′. We assume that the observed sketches y vary with a standard de-
viation of σsketch, due to Gaussian noise. We can define the likelihood
term for sketching interfaces Esketch as

Esketch = − ln pr (y|�α, �γ )
∝ ∑T ′

t ′=1 ‖y(t ′) − f(P(w(t); �α)‖2/σ 2
sketch

∝ ∑T ′
t ′=1 ‖y(t ′) − f(P(T(t ; �γ ); �α))‖2/σ 2

sketch,

(17)

where the function f maps a synthesized full-body pose at a partic-
ular frame to the positions and/or orientations of end effectors. For
simplicity, we measure the consistency between the input sketches
and the synthesized motion at the timeline of the input sketch
t ′ = 1, . . . , T ′. The temporal correspondences between the two
motions are described by the time warping function t ′ = w(t).
Usually, an evaluation of the likelihood term needs to interpolate
the synthesized motion at the timeline t ′ = 1, . . . , T ′ based on the
values at w(1), . . . , w(T ).

Combining the likelihood term with the prior term, we can
formulate the sketch-based animation process as the following

optimization problem. We have

arg min
�α,�γ

Esketch − ln pr (�α, �γ ), (18)

where the first term Esketch is the likelihood term for the sketch-
based animation, which measures how well the generated animation
matches the path and timing of a 2D sketch.

The current system allows the user to sketch out a motion using a
pen-based interface (Figure 6(a)). However, the sketching interface
can also be used with other types of input devices. For example, the
user could wear a small number of accelerometers, such as wiimotes
and act out a desired motion with their own performance.

6.3 Motion Filtering

One nice property of deformable motion models is that they en-
code environmental contact information. With such a model, we
could filter the noisy motion that violates environmental contact
constraints. For example, foot-skating artifacts often appear dur-
ing various motion data processing stages, such as motion editing,
blending, warping, or synthesis. Our algorithm can be used to au-
tomatically detect and remove foot-skating artifacts present in an
input walking sequence.

Let y(t ′), t ′ = 1, . . . , T ′ represent noisy motion data, we can
formulate the motion filtering problem as the MAP problem

arg min
�γ ,�α

T ′∑
t ′=1

‖y(t ′) − P(T(t ; �γ ); �α)‖2/σ 2
f ilter − ln pr (�α, �γ ), (19)

where P(T(t ; �γ ); �α)) represents the filtered motion.
Figure 1(c) shows the result for filtering a noisy walking se-

quence. The original walking sequence contains a significant num-
ber of foot-skating artifacts, in which, instead of remaining firmly
in place, a character’s foot slides on the ground after the character
plants it .

6.4 Real-time-Motion Optimization

For all applications, we first analytically evaluate the Jacobian terms
of the objective function. Next, we run a gradient-based optimiza-
tion with the Levenberg-Marquardt algorithm [Lourakis 2009]. In
the following section, we briefly discuss the initialization and con-
vergence speed for each application.

The direct manipulation interface for animation synthesis runs in
real time. We initialize the motion by using the mean motion and
time warping function. When the user employs the direct manipula-
tion interfaces to edit the motion on-the-fly, we initialize the motion
in the current timestep t with the motion generated in the previous
timestep t − 1. This significantly improves the optimization effi-
ciency because the initialized motion is already close to the final
motion. We have completed hundreds of tests with various forms of
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Table I. Details of the Data We Used
Walking Jumping Bowling Golf Swing

N 200 41 40 45
M 30 18 20 23
K 20 12 11 15
T 133 145 69 306
F 120 120 120 120

N is the number of motion examples. M is the number of the de-
formable parameters for geometric variations. K is the number of
the deformable parameters for timing variations. T is total number
of frames used for reference motions. F is the frame rate for motion
databases (frame per second).

direct manipulation constraints and have never found a local min-
imum problem. Besides optimization in a very low-dimensional
space and very good initial guesses, we believe there are two other
factors involved in fast convergence. First, we optimize α and γ
separately in the direct manipulation interface. Second, the direct
manipulation constraints are often very sparse.

In the sketching interfaces, we initialize the motion with the mean
motion. The solution converges rapidly due to a low-dimensional
optimization space and a prior term constraining the solution space.
Usually, the system runs at interactive frame rates and does not
have local minimum problems. However, we have observed that the
system often slows down a little bit when the timing of the sketched
trajectories (e.g., an extremely slow sketch of a jumping motion) is
unreasonable.

7. RESULTS

We demonstrate the performance of our motion generation system in
a variety of human actions, including walking, jumping, bowling,
and golf swing as well as transition motions, such as walking to
jumping. Table I shows the details of our training data. The motion
was captured with a Vicon motion capture system consisting of 12
MXF20 cameras with 41 markers, running at 120Hz. Our results
are best seen in the accompanying video although we show sample
frames of a few motions in the article.

Direct manipulation interfaces. Figures 1(a) and 5 show sample
images for the direct manipulation interfaces, including direct ma-
nipulation with point constraints and fixed constraints, direct ma-
nipulation with multiple trajectory constraints, direct manipulation
of walking directions, and direct manipulation of a walking step
size. The direct manipulation interfaces run in real time.

Sketching interfaces. Figure 1(b) and Figure 6 show sample im-
ages of the sketching interfaces. The user selects one point on the
character and draws a timed trajectory in the screen space. The sys-
tem automatically generates a motion sequence that matches the
speeds and trajectories defined by the input sketches.

Other applications. The motion synthesis framework for sketch-
ing interfaces is highly flexible. It can easily be extended to trans-
form various forms of user constraints into a high-quality 3D mo-
tion sequence. For example, it can be used to generate 3D anima-
tion sequences from 2D animation sequences, reconstruct 3D hu-
man motion from a small set of 2D trajectories tracked from video,
or interpolate intermediate frames between key frames. Figure 7
shows that we can take a 2D biped walking sequence generated by
physically-based simulation [Yin et al. 2007] as an input and lift
the 2D motion into a high-quality 3D animation sequence. More
specifically, we use the 2D foot positions and the 2D joint angle
values of the biped motion data to reconstruct the deformable mo-
tion parameters. Figure 8 shows that we can transform a small set

of 2D tracking features from a single-camera video stream into a
high quality 3D motion sequence.

7.1 Synthesis of Long Motions

Our current system can create a long motion by seamlessly stitching
cyclic motions of the same class. For example, in the “lifting 2D
animation into 3D animation” and “motion filtering” applications,
both systems produce a two-cycle walking sequence. To create such
results, we optimize the deformable parameters of the two cycles
simultaneously. To ensure a smooth transition from one cycle to
another, we enforce smoothness constraints at transition frames.

If we cannot smoothly transition from one action to another, we
need to construct deformable models for transition motions as well.
We record various styles of transition motions and use the mo-
tion registration and analysis procedure to construct a deformable
model for the transition motions. We synthesize a long motion by
simultaneously estimating the deformable parameters of multiple
segments (including atomic motions and transition motions) from
user constraints. Similarly, we enforce smoothness constraints at all
transition frames. Figure 9 shows a long motion generated by de-
formable motion models of three atomic motions (walking, jumping,
and bowling) and one transition motion (walking to jumping). Note
that the system directly transitions from jumping to bowling with
smoothness constraints.

7.2 Comparisons

The deformable motion models combine the advantages of both
the motion interpolation and statistical modeling approaches while
avoiding their disadvantages at the same time. We evaluate the ef-
fectiveness of our algorithm by comparing it with motion interpola-
tion [Kovar and Gleicher 2004] and statistical dynamic models [Chai
and Hodgins 2007].

Comparison with motion interpolation. Unlike deformable mo-
tion models, motion interpolation does not support timed trajectory
constraints such as sketched trajectories, timed key frames, 2D ani-
mation sequences, or noisy motion sequences. For the simplicity of
comparison, we assume that the input trajectory has already been
registered with the reference motion. We use the same set of con-
straints (one single trajectory) for motion synthesis and interpola-
tion. Figures 10(a) and 10(b) show that our algorithm can satisfy
the constraints much better than motion interpolation.

Comparison with statistical dynamic models. We also conducted
comparison against statistical dynamic models [Chai and Hodgins
2007]. Once again, we used the same set of constraints for compar-
ison, and chose the key-frame constraints in order to evaluate their
performances. The accompanying video shows that our algorithm
creates much better results than statistical dynamic models. In par-
ticular, the animation generated by the statistical dynamic models
contains significant foot-sliding artifacts. This is because statisti-
cal dynamic models do not encode any foot contact information.
In contrast, our algorithm can generate a natural-looking animation
without any foot-sliding artifacts. Figures 10(c) and 10(d) show
sample frames from the comparison results. In addition, our system
runs at interactive frame rates, and the computational time of our
system is approximately 100 times faster than the synthesis system
using statistical dynamic models.

7.3 Limitations

The quality of the generated animation highly depends on the quality
of the user constraints and prior knowledge embedded in training
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Fig. 7. Motion transformation using deformable motion models: (top) a 2D biped walking sequence generated by physically-based simulation; (bottom) the
transformed 3D animation.

Fig. 8. Interactive generation of a golf swing motion from an input video: (top) the input video and tracked image features; (middle) the reconstructed 3D
motion from the same viewpoint; (bottom) the reconstructed 3D motion from a different viewpoint.

Fig. 9. A long animation generated by deformable motion models of three atomic actions (walking, jumping, and bowling) and one transition motion (walking
to jumping).
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Fig. 10. Comparisons with motion interpolation and statistical dynamic models. (a) The result from motion interpolation does not satisfy the constraints. (b)
Our result with the same set of trajectory constraints. (c) The result from statistical dynamic models contains significant foot-sliding artifacts and appears very
jerky. (d) Our result with the same set of key-frame constraints. Note that the green poses are the key frames specified by the user.

Fig. 11. Failures and questionable examples. (a) Generating a jumping mo-
tion with an impossible jumping height in the sketching interfaces, where the
cyan curve is the sketched root trajectory and the red curve is the synthesized
root trajectory. (b) Generating walking with hand waving by using three key
frames in the direct manipulation interfaces, where the green frames are
key-frame constraints, and the gold frames are synthesized motions.

data. The system often fails to generate a natural-looking motion
that accurately satisfies the user’s input in the following two cases.

—The user constraints are not natural or self-conflicting. In other
words, there does not exist a natural-looking motion that can
accurately satisfy the constraints. For example, if the root trajec-
tory sketched by the user is not a perfect ballistic trajectory, the
generated jumping animation will not precisely follow the user’s
sketch because there are no natural jumping motions that accu-
rately satisfy the sketching constraints. Figure 11(a) shows that
the system cannot generate a jumping motion with an impossible
height.

—The system will not produce a desired motion if the training data
does not contain any desired motion patterns. For example, the
current deformable walking model fails to generate walking with
“hand waving” because the current database does not include any
“hand waving” patterns (Figure 11(b)).

When a failure or questionable case happens, the system prefers
to generate a natural-looking motion that “best” matches the
user’s input rather than generating the “best”possible motion that
“precisely” matches the user’s input.

8. DISCUSSION AND CONCLUSION

We have presented deformable motion models for human motion
analysis and synthesis. The proposed deformable motion models
can represent human actions in a low-dimensional space, which not

only speeds up the synthesis process but also reduces the synthe-
sis ambiguity. Another advantage of the deformable motion mod-
els is that they encode global motion structures and environmental
contact information. For example, we could easily identify which
frames in the deformable walking models correspond to “left-toe-
down” or “double-support.” This ensures synthesized motions have
correct global motion structures and environmental contact states,
thereby significantly reducing visual artifacts that are often present
in statistically-based motion synthesis systems.

We have developed two interactive and easy-to-use interfaces
for human motion generation: direct manipulation interfaces and
sketching interfaces. The direct manipulation interface allows users
to directly manipulate an entire motion sequence presented to them.
The interfaces are easy to learn and use; rapid, incremental feedback
allows users to make fewer errors and complete tasks in less time,
because they can see the results of an action before wasting the time
it takes to complete the action. The interfaces work well for novice
users because the user can generate realistic animation even with
a very sparse set of constraints, for example, point dragging at key
frames, foot step sizes, or directions. The user could also fine-tune
the motion with fixed handles and incremental constraints. But the
interfaces might become time consuming when a large number of
constraints are needed to generate a fine-grained motion.

Sketching interfaces, which allow for placing a series of kine-
matic and timing constraints in a single step, probably provide the
fastest and most convenient way to generate a high-quality ani-
mation. The system, however, may fail to generate good results if
the user does not have the skills to control the positions and tim-
ing of an end-effector. One way to address this problem is to use
accelerometers (e.g., wiimotes) to sketch out the motion with full-
body performances. However, sketching interfaces do not provide
the flexibility to fine tune the motion. One possible solution is to
combine them with the direct manipulation interfaces. For example,
the user can quickly produce a rough motion with the sketching in-
terfaces and then rely on the direct manipulation interfaces to fine
tune the motion.

We formulate the constraint-based motion synthesis problem in
a Maximum A Posteriori (MAP) framework. The MAP framework
provides a principled way to balance the trade-off between user
constraints and motion priors. In our experiments, the constraints
from intuitive interfaces are often noisy and could even be unnatural,
or conflict with each other. When this happens, the system prefers
to generate a “natural-looking” motion that “best” matches the user
constraints rather than generating the “best” possible motion that
“exactly” matches the user constraints.

Deformable motion models have demonstrated a strong general-
ization ability because they can interpolate/extrapolate an infinite
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number of motions that are not in the database. For example, our
current deformable walking model can transform a physically simu-
lated 2D biped walking sequence [Yin et al. 2007] into a high-quality
3D motion sequence. However, the system will not generate new
motions that cannot be represented by the deformable motion mod-
els. For instance, our deformable walking model cannot synthesize
a motion “walking with head scratching” because the current walk-
ing database does not include similar patterns. One possibility to
address this limitation is to capture or keyframe a motion “walking
with head scratching”, register the motion with the synthesized mo-
tion using the low-body motion data, and transfer the upper-body
pattern “head scratching” to the synthesized motion [Heck et al.
2007].

Another drawback to the approach is that our motion prepro-
cessing step is not fully automatic. For a very large dataset, the
registration process could be very time consuming. However, a
“bootstrap” approach can be adopted. We can first use the semi-
automatic algorithm to register a small set of representative motion
examples and build a deformable motion model from them. We then
match the model to a new motion example. Again, we can use the
semi-automatic algorithm to correct the registration result if they
do not match. We can update the deformable motion model with
the new motion example and use it to register another new motion
example. This process is repeated, incrementally building a model
until the deformable motion model can match a new motion exam-
ple sufficiently accurately every time, and therefore needs no more
training.

We show the deformable motion models can be applied for trans-
forming 2D animation to 3D animation, reconstructing high-quality
3D motion from video, and detecting and removing foot-sliding arti-
facts of input walking sequences. We believe the deformable motion
models could also be leveraged for many other applications in human
motion processing, such as motion reconstruction, registration, edit-
ing, compression, and completion. For example, encoding human
motion data with deformable parameters could be used to compress
human motion data. One of the immediate directions for future work
is, therefore, to investigate the application of the deformable motion
models to human motion processing.
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